Shaping Dendritic Spines in Autism Spectrum Disorder: mTORC1-Dependent Macroautophagy
نویسندگان
چکیده
In this issue of Neuron, Tang et al. (2014) explore the relationship between developmental dendritic pruning, elevated mTORC1 signaling, macroautophagy, and autism spectrum disorder. The study provides valuable new insight into mTORC1-dependent cellular dysfunction and neurodevelopmental disorders.
منابع مشابه
Lis1 controls dynamics of neuronal filopodia and spines to impact synaptogenesis and social behaviour
LIS1 (PAFAH1B1) mutation can impair neuronal migration, causing lissencephaly in humans. LIS1 loss is associated with dynein protein motor dysfunction, and disrupts the actin cytoskeleton through disregulated RhoGTPases. Recently, LIS1 was implicated as an important protein-network interaction node with high-risk autism spectrum disorder genes expressed in the synapse. How LIS1 might participat...
متن کاملSmaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1.
Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, ...
متن کاملMMP-9 in Control of Synaptic Plasticity: a Subjective Account
Matrix metalloproteinase 9, MMP-9 is an extracellularly operating enzyme that has been demonstrated as an important regulatory molecule in control of synaptic plasticity, learning and memory. Either genetic or pharmacological inhibition of MMP-9 impairs late phase of long-term potentiation at various pathways, as well as appetitive and spatial memory formation, although aversive learning remain...
متن کاملP127: The Role of Genes in ASD
Autism Spectrum Disorder (ASD) is a heterogeneous group of neurological disorders that is determined solely by their behavior. In this disease, a large part of the neurological disorder and neural controls disorder are observed. Researchers believe that over expressions changes in many genes are the cause of autism. Our goal is to investigate the genetic factors affecting ASD and its treatment ...
متن کاملIRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders
IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 83 شماره
صفحات -
تاریخ انتشار 2014